

PARTS LIST

 Ω

 Ω

 Ω

 µ

 Ω

 µ

 Ω

 Ω

 Ω

 Ω

 Ω

OTHER PARTS YOU MAY NEED

″

Ω

Ω

Ω

http://www.altairduino.com/wp-content/uploads/2017/12/IMG_0001.jpg
http://www.altairduino.com/wp-content/uploads/2017/12/IMG_0002.jpg
http://www.altairduino.com/wp-content/uploads/2017/12/IMG_0004.jpg

Ω

http://www.altairduino.com/wp-content/uploads/2017/12/IMG_0005.jpg
http://www.altairduino.com/wp-content/uploads/2017/12/IMG_0006.jpg
http://www.altairduino.com/wp-content/uploads/2017/12/IMG_0007.jpg

Ω

http://www.altairduino.com/wp-content/uploads/2017/12/IMG_0008.jpg
http://www.altairduino.com/wp-content/uploads/2017/12/IMG_0009.jpg

µ

Ω

http://www.altairduino.com/wp-content/uploads/2017/12/IMG_0011.jpg
http://www.altairduino.com/wp-content/uploads/2017/12/IMG_0010.jpg
http://www.altairduino.com/wp-content/uploads/2017/12/IMG_0013.jpg

http://www.altairduino.com/wp-content/uploads/2017/08/IMG_3082.jpg
http://www.altairduino.com/wp-content/uploads/2017/12/IMG_0018.jpg

http://www.altairduino.com/wp-content/uploads/2017/12/IMG_0020.jpg
http://www.altairduino.com/wp-content/uploads/2017/12/IMG_0016.jpg

http://www.altairduino.com/wp-content/uploads/2017/12/IMG_0023.jpg
http://www.altairduino.com/wp-content/uploads/2017/12/IMG_0024.jpg

http://www.altairduino.com/wp-content/uploads/2017/12/IMG_0026.jpg
http://www.altairduino.com/wp-content/uploads/2017/12/IMG_0025.jpg

http://www.altairduino.com/wp-content/uploads/2017/12/IMG_0028.jpg
http://www.altairduino.com/wp-content/uploads/2017/12/IMG_0029.jpg

http://www.altairduino.com/wp-content/uploads/2017/12/IMG_0030.jpg
http://www.altairduino.com/wp-content/uploads/2017/12/IMG_0031.jpg

http://www.altairduino.com/wp-content/uploads/2017/12/IMG_0032.jpg
http://www.altairduino.com/wp-content/uploads/2017/12/IMG_0037.jpg

https://www.altairduino.com/wp-content/uploads/2018/03/IMG_3911.jpg

Ω

Ω

Ω

Ω

Ω

https://www.altairduino.com/wp-content/uploads/2018/03/IMG_3911.jpg

Ω Ω

https://www.altairduino.com/wp-content/uploads/2018/03/IMG_3911.jpg
https://www.altairduino.com/wp-content/uploads/2018/03/IMG_3911.jpg

https://www.altairduino.com/wp-content/uploads/2018/03/IMG_3911.jpg
https://www.altairduino.com/wp-content/uploads/2018/03/IMG_3911.jpg

https://www.altairduino.com/wp-content/uploads/2018/03/IMG_3911.jpg
https://www.altairduino.com/wp-content/uploads/2018/03/IMG_3911.jpg

https://www.altairduino.com/wp-content/uploads/2018/03/IMG_3911.jpg
https://www.altairduino.com/wp-content/uploads/2018/03/IMG_3911.jpg

https://www.altairduino.com/wp-content/uploads/2018/03/IMG_3911.jpg
https://www.altairduino.com/wp-content/uploads/2018/03/IMG_3911.jpg
https://www.altairduino.com/wp-content/uploads/2018/03/IMG_3911.jpg

https://www.altairduino.com/wp-content/uploads/2018/03/IMG_3911.jpg
https://www.altairduino.com/wp-content/uploads/2018/03/IMG_3911.jpg
https://www.altairduino.com/wp-content/uploads/2018/03/IMG_3911.jpg

https://www.altairduino.com/wp-content/uploads/2018/03/IMG_3911.jpg
https://www.altairduino.com/wp-content/uploads/2018/03/IMG_3911.jpg

https://www.altairduino.com/wp-content/uploads/2018/03/IMG_3911.jpg
https://www.altairduino.com/wp-content/uploads/2018/03/IMG_3911.jpg
https://www.altairduino.com/wp-content/uploads/2018/03/IMG_3911.jpg

https://www.altairduino.com/wp-content/uploads/2018/03/IMG_3911.jpg
https://www.altairduino.com/wp-content/uploads/2018/03/IMG_3911.jpg
https://www.altairduino.com/wp-content/uploads/2018/03/IMG_3911.jpg

https://www.altairduino.com/wp-content/uploads/2018/03/IMG_3911.jpg
https://www.altairduino.com/wp-content/uploads/2018/03/IMG_3911.jpg
https://www.altairduino.com/wp-content/uploads/2018/03/IMG_3911.jpg

https://www.altairduino.com/wp-content/uploads/2018/03/IMG_3911.jpg
https://www.altairduino.com/wp-content/uploads/2018/03/IMG_3911.jpg
https://www.altairduino.com/wp-content/uploads/2018/03/IMG_3911.jpg
https://www.altairduino.com/wp-content/uploads/2018/03/IMG_3911.jpg

https://www.altairduino.com/wp-content/uploads/2018/03/IMG_3911.jpg
https://www.altairduino.com/wp-content/uploads/2018/03/IMG_3911.jpg

CONGRATULATIONS!
YOUR ALTAIR 8800 IS
COMPLETE!

https://www.altairduino.com/wp-content/uploads/2018/03/IMG_3911.jpg

https://www.altairduino.com/wp-content/uploads/2018/03/IMG_3911.jpg

- 1 -

Altair 8800
Simulator

© 2017-2019 David Hansel

https://www.hackster.io/david-hansel/arduino-altair-8800-

simulator-3594a6

https://github.com/dhansel/Altair8800

Table of Contents

Acknowledgements ... - 2 -

Highlights .. - 3 -

Front Panel Elements .. - 4 -

Auxiliary Switch Functions .. - 5 -

Serial ports .. - 12 -

Interacting with software via a terminal ... - 15 -

Printer Emulation .. - 18 -

MITS Disk Controller Support .. - 19 -

Tarbell Disk Controller Support ... - 21 -

Hard Disk Support ... - 23 -

Cromemco Dazzler Support .. - 25 -

- 2 -

Processor Technology VDM-1 Support ... - 26 -

Configuration Menu .. - 28 -

File System Manager ... - 38 -

Debugging Capabilities .. - 38 -

Example program: Kill-the-bit game ... - 39 -

Loading 4k BASIC the old-school way ... - 41 -

Altair Time Sharing BASIC ... - 43 -

Music System .. - 46 -

MITS Programming System II .. - 49 -

Interfacing external hardware via data/address buses - 57 -

Acknowledgements

I must give many credits to Mike Douglas of altairclone.com who

has spent countless hours collecting information about the Altair

and made it all available on his web site for the community to use.

Additionally, most of the software included in this simulator was

collected, put into working condition and in many cases amended

with additional functionality by Mike. Without his work, this project

would have been significantly more complicated to put together,

way less fun and would probably not happened at all.

Another big thanks to Martin Eberhard who has written many tools

for the Altair community, for example the combo disk boot loader

and hard disk loader which are used by the simulator. His ADEXER

tool was invaluable for debugging the hard disk support. Thanks also

for helping me sort through various issues with the hard disk

emulation.

- 3 -

Highlights

 Runs at about the same speed as the original

 Emulated memory size (RAM) is 64KB

 Can emulate I8080 and Z80 processor (Z80 emulation runs at

reduced clock rate of about 2.6MHz)

 ALTAIR extended BASIC ROM (16k) can be mapped to addresses

0xC000-0xFFFF

 Emulates one ALTAIR 88-SIO, 88-ACR and one or two 88-2SIO

board(s). Each device can be mapped to the Arduino’s serial

port(s). Data sent to each device can be captured and replayed.

 The ACR device also supports using the CSAVE/CLOAD

commands in extended BASIC. When invoking CSAVE, the

program will automatically be saved to a file specified by the file

name in the CSAVE command. For CLOAD, all programs saved

with CSAVE will automatically be played back until the program

specified by the file name is found (or not).

 By default, both the 88-SIO and 88-2SIO boards are mapped to

the Arduino’s main serial interface which is configured to

115200 baud 8n1. That interface be accessed via pins 0/1 or the

Arduino’s USB cable (on the Due make sure to connect the USB

cable to the programming USB port, not the native port).

 Processes input/output on serial devices to deal with 7/8 bit

output, upper-case input and backspace.

 Emulates a MITS 88-DCDD disk controller with 4 (can be

configured to up to 16) disk drives attached.

 Emulates a Tarbell SD disk controller with 4 disk drives attached.

 Emulates a MITS 88-HDSK hard disks drive with one unit (can be

configured up to 4) and 4 platters.

 Emulates the 88-RTC-VI board which makes it possible to run

ALTAIR Time Sharing BASIC.

 All settings can be modified via a configuration editor (invoke by

holding STOP and raising AUX1)

 Above specs apply when running on an Arduino Due. The

simulator can also work when running on an Arduino Mega

2560. In that case, it runs at about 25% original speed and has

- 4 -

6k emulated RAM. Disk drive emulation is not supported on the

Mega.

Front Panel Elements

Lights:

 A15-A0 Shows the current address bus state (i.e. PC during

normal operation)

 D7-D0 Shows the current data bus state

Switches:

 SW15-SW0 Address/Data entry switches

 RUN Execute instructions starting at current PC

location

 STOP Stop program execution

 SINGLE STEP Execute single instruction at current PC location and

increment PC

 EXAMINE Set PC to address from SW15-0 and show content of

that address on D7-0

 EXAMINE NEXT Increment PC and show content of that address

on D7-0

 DEPOSIT Store value of D7-0 at current PC address (If held down

during power-up the simulator will load the

configuration selected with the SW0-7 switches instead

of configuration 0)

 DEPOSIT NEXT Increase PC by one and store value of D7-0 at

that address

 CLR Stop serial capture/replay activated by AUX2

(see below)

Holding CLR down during power-up will

initialize memory and CPU registers to 0

- 5 -

 RESET Reset processor (set PC to 0)

(If held up during power-up the simulator will start up

with default settings)

 PROTECT Mark current memory page as write-protected (cannot

be written to)

 UNPROTECT Remove write-protect status of current page

 AUX1/AUX2 See detailed information below

Auxiliary Switch Functions

AUX1 down:

Function depends on current setting of SW7-0:

 0…0000: Print this list to serial interface

 0…0001: Calculator (David Hansel, 2015)

 Flipping SW15 (on->off or off->on) executes operation selected by

SW14-13

between operand currently showing on A15-8 lights and operand

selected

by SW12-8 switches. Result is shown on A15-8 lights.

 Operations (SW14-13): 00=Add, 01=Subtract, 10=Multiply,

11=Divide

 0…0010: Kill-the-bit (Dean McDaniel, 1975)

 Kill the rotating bit. If you miss the lit bit, another bit turns on

leaving two bits to destroy.

 Quickly toggle the switch, don't leave the switch in the up

position.

 Before starting, make sure all the switches are in the down

position.

 0…0011: Pong game using front panel (Mike Douglas of

altairclone.com)

 Left player quickly toggles SW15 to hit the "ball."

 Right player toggles SW8. Score is kept in memory locations 0x80
and 0x81 (left and right).

 Score is missed balls, so the lower number wins.

 0…0100: Pong game using serial terminal (David Hansel, 2015)

- 6 -

 Needs terminal connected to serial interface. Terminal must

understand escape sequences for cursor movement (“ESC-[“)

 Left player uses A/Z keys (paddle up/down), right player uses K/M

keys (paddle up/down)

 0…0101: 4k Basic (Bill Gates, Paul Allen, Monte Davidoff 1975)

 SW11 down: I/O to SIO device, SW11 up: I/O to 2SIO device

(either setting will work in default simulator configuration)

 Answering N to questions about SIN/RND/SQR slightly increases

available BASIC memory

 0…0110: MITS 16k ROM Basic

 On Arduinoe Due, maps ROM extended BASIC to addresses

0xC000-0xFFFF until next RESET.

(On Arduino Mega, ROM extended BASIC is always mapped to

that range).

 Sets PC to 0xC000 and starts execution (i.e. starts BASIC)

 Before activating, set SW15-12 switches to

0000: I/O goes to 2SIO device

0010: I/O goes to SIO device

(wither setting will work in default simulator configuration)

 When asked MEMORY SIZE, just press enter.

 When asked LINEPRINTER, enter capital O and press enter

 Available memory for BASIC programs is 48101 bytes (~3000 bytes

on Arduino Mega)

 CSAVE and CLOAD commands can be used to save/load programs

to/from internal storage

 0…0111: MITS Programming System II (Due only)

 SW11 down: I/O to SIO device, SW11 up: I/O to 2SIO device

(either setting will work in default simulator configuration)

 Editor, Assembler and Debugger

 See intro at the end of this document, google for full

documentation

 0…1000: Combo Disk Boot Loader ROM V2.05 (Martin Eberhard, Mike

Douglas, 2016) (Due only)

- 7 -

 See MITS Disk Controller Support section below

 0…1001: ALTAIR Turnkey Monitor (Due only)

 Uses 2SIO device for I/O

 0…1010: Music “Daisy, Daisy…” (Steve Dompier, 1975) (Due only)

 In configuration menu, set throttle delay to 5 before running

(automatic throttle

introduces noise due to the throttle-adjustment code that runs 40

times per second)

 An AM radio held on top of Simulator, close to D0-D7 lights will

pick up the song

 See: http://www.digibarn.com/collections/weirdstuff/altair-

sheetmusic/

 0…1011: 8080 CPU Diagnostic (Microcosm Associates, 1980)

 Basic test, takes about a second to finish

 Outputs to serial interface (“CPU IS OPERATIONAL”)

 0…1100: 8080 CPU Exerciser (Frank D. Cringle 1994, Ian Bartholomew

2009)

 Very thorough test that generates a CRC code for each group of

tests.

 Outputs to serial interface.

 Full test takes about 4 hours. The "aluop <b,c,d,e,h,l,m,a>" section

takes especially long

 0…1101: Music System (Processor Technology, 1977) (Due only)

 Processor Technology’s Music System for the Altair

 Loads the music system (at 0x0) and ACUTER monitor (at 0xF000)

into Altair RAM and starts ACUTER monitor.

 See “Music System” section below for more info

 0…1110: Hard-Disk boot ROM V2.0 (Martin Eberhard, 2014) (Due

only)

 See Hard Disk Support section below

 0…1111: Enhanced Multi boot loader V3.0 (Martin Eberhard, Mike

Douglas, 2016) (Due only)

 Set SW10-8 to select boot device:

000=2SIO port 1, 010=SIO, 011=ACR, 110=2SIO port 2

 0…10000: Tarbell disk boot loader (Due only)

- 8 -

 Runs at FF00h (unlike the original, which ran at 0h)

 0100000: Read Intel HEX data from serial input (primary host

interface)

 11xxxxxx: Save the 256-byte memory page currently selected on the

SW15-8 switches to file #xxxxxx

 10xxxxxx: Load the 256-byte memory page currently selected on the

SW15-8 switches from file #xxxxxx

AUX1 up:
If STOP is held up while AUX1 is raised, then invoke the configuration

editor (see Configuration menu below).

Otherwise, run the program configured via the corresponding setting in

the configuration menu.

AUX2 down:
If SW14-12 are set to 001 then mount disk in MITS disk drive (see MITS

Disk Controller Support section below).

If SW14-12 are set to 101 then mount disk in Tarbell disk drive (see

Tarbell Disk Controller section below).

If SW14-12 are set to 011 then mount image in hard disk (see Hard Disk

Support section below).

Otherwise, play back captured data or example programs. SW15-13

select the device

to which data is played back and SW8-0 select what data is being played

back:

 SW15 down: Use the serial device which is mapped to the host

serial output (primary) and

has last seen input/output activity. In most cases this will

automatically select the intended device.

 SW15 up: Use serial device selected on SW14-13:

00: 88-SIO (port 0x00/0x01)

01: 88-ACR (port 0x06/0x07) (audio cassette interface)

10: 88-2SIO, serial 1 (port 0x10/0x11)

11: 88-2SIO, serial 2 (port 0x12/0x13)

- 9 -

 SW8 down: Play back basic/assembly example # selected on

switches SW7-0 (see below)

 SW8 up: Play back captured data in file # selected on switches

SW7-0 (see below)

Loading BASIC/assembly examples (assembly examples not included if

Z80 support is enabled):

 SW7 down: BASIC example, SW7 up assembly example

 If SW6-0 are all 0 then a list of available examples will be

transmitted

 Set SW6-0 to the example number in the list and push AUX2

DOWN to transmit example

 Playback can be stopped by pushing CLR or by pushing AUX2

DOWN again

Playing back captured data:

 Play back data previously captured via AUX2 up

 The file number to be played back must be selected via SW7-0

 Playback can be stopped by pushing CLR or by pushing AUX2

DOWN again

- 10 -

AUX2 up:

If SW14-12 are set to 001 then unmount disk from disk drive (see MITS

Disk Controller Support section below).

If SW14-12 are set to 101 then unmount disk from Tarbell disk drive

(see Tarbell Disk Controller section below).

If SW14-12 are set to 011 then unmount image from hard disk (see Hard

Disk Support section below).

Otherwise, capture data. SW15-13 select the device from which data is

captured (same as SW15-13 settings in AUX2 down section above).

SW7-0 specify the file number under which the captured data will be

saved.

Capturing continues until AUX2 is again pressed UP.

Capturing serial data can be used to save a BASIC program in BASIC

(note that in extended BASIC the CSAVE/CLOAD commands provide an

easier way of doing this):

1. Set SW7-0 to the desired storage file number

2. Set SW15-13 to 000 (to automatically select capture device)

3. type "list" (but not ENTER)

4. activate AUX2 up to start capture

5. press ENTER

6. wait until listing is finished

7. activate AUX2 up again to finish capture

To later restore a program:

1. Set SW7-0 to a storage file number under which serial data has

been captured before

2. Set SW15-13 to 000 (to automatically select replay device)

3. type "new" to clear the current program

4. activate "AUX2 down" to start replaying the captured data

5. Ignore the "SYNTAX ERROR" at the end

(reported because the final "ok" of the "list" function was also

captured)

- 11 -

Capturing cassette data can be used to save BASIC variable contents in

Extended BASIC or saving

programs from MITS Programming System II

1. Set SW7-0 to the desired storage file number

2. Set SW15-13 to 101 (to capture from ACR device on I/O address

6/7)

3. activate AUX2 up to start capture

4. enter CSAVE*v [where v is the variable name that is supposed

to be saved]

5. Repeat the previous step if more variables need to be saved

6. wait until listing is finished

7. activate AUX2 up again to finish capture

To later load the data:

1. Set SW7-0 to a storage file number under which cassette data

has been captured before

2. Set SW15-13 to 101 (to replay to ACR device on I/O address 6/7)

3. Set SW8 to 1 (to select file replay, not BASIC example)

4. activate AUX2 down to start replaying the captured cassette

data

5. enter CLOAD*v [where v is the variable name that is to be

loaded]

6. Repeat the previous step if more variables need to be loaded

7. Activate AUX2 down to stop replay

- 12 -

Serial ports

The Emulator simulates an Altair 8800 with one 88-SIO, one 88-ACR and
one or two 88-2SIO card(s) installed. These cards are visible to the
software running within the emulator (for example ALTAIR BASIC).
All together there are up to seven emulated serial ports available to the
software.

The Arduino, which runs the emulator, has its own serial ports that
actual terminals can be connected to. The configuration editor allows
the user to map emulated serial ports to real serial ports.

While the Arduino Mega has 4 serial ports, only one of them is available
to use with the emulator because the pins that the others would use are
connected to front panel elements such as LEDs or switches. The Mega’s
single serial port can be accessed either by plugging in the USB cable or
by connecting a serial device to pins 0 (RX) and 1 (TX). Note that these
pins use 5V levels, not the +12V/-12V used by real serial hardware.
However, the levels can be boosted to proper serial levels using an
adapter such as a MAX232.

When using the Arduino Due, there are up to five serial ports available
for the emulator:

1. Programming port USB connection. After connecting a USB
cable to the Programming Port of the Arduino it will show up on
a PC as a serial interface. This is the default interface that the
emulator uses (at 115200 baud, 8N1) when first activated or
reset to its defaults.
This connection can also be accessed on pins 0 (RX) and 1 (TX)
of the Arduino Due BUT there appears to exist a problem with
(some versions of) the Arduino Due where pin 0 (RX) does not
work. For more information about that issue see here:
https://forum.arduino.cc/index.php?topic=474483.0
The pins are 3.3V and are not 5V tolerant. This port can be
configured from 600 to 1050000 baud, except 1200 baud since
opening a USB serial connection at 1200 baud causes the Due to
erase its flash memory and go into programming mode. Baud
rates of 300 and below are not available because the USB-to-
serial chip on the Due does not support them:
https://github.com/arduino/Arduino/issues/4714

https://forum.arduino.cc/index.php?topic=474483.0
https://github.com/arduino/Arduino/issues/4714

- 13 -

2. Native port USB connection. The second USB port on the
Arduino Due can also be used as a serial connection by plugging
in a USB cable. This port does not have corresponding I/O pins
and can only be accessed via USB. Since it is a pure USB
connection the baud rate is irrelevant and is fixed at 115200.

3. Serial port on pins 18 (TX) and 19 (RX). The pins are 3.3V and are
not 5V tolerant. This port can be configured from 110 to
1050000 baud.

4. Serial port on pins A6 (RX) and A7 (TX). This port is disabled in
the default configuration since the same pins (A6/A7) are used
for the PROTECT/UNPROTECT switch on the front panel.
However, the Altair’s PROTECT functionality is rarely (if ever)
used and therefore the pins can be re-purposed to act as a
serial port by changing two #define statements in the code
(see below).

IMPORTANT: If pins A6/A7 of your Arduino are already
wired to the PROTECT/UNPROTECT switch I highly
recommend to physically disable the switch (for
example by removing the connection of the middle pin
ground) before enabling this port in the software. If the
serial port is enabled in the software and the switch is
connected, pressing either PROTECT or UNPROTECT can
destroy pin A7 on the Arduino or possibly a connected
serial device. This is because serial lines idle high (3.3V)
and the switch, when pressed, connects the pin directly
to ground. The best solution is to connect the middle
pin of the PROTECT/UNPROTECT switch to ground via a
1k resistor (instead of directly). That way the switch can
be used if enabled in software but does not cause
damage when pressed while the serial port is enabled.

To enable this port in the emulator, change the following in
host_due.h:
“#define USE_SERIAL_ON_A6A7 0” to “#define
USE_SERIAL_ON_A6A7 1”

The pins are 3.3V and are not 5V tolerant. This port uses a
software UART implementation which can be configured from
110 to 38400 baud.

- 14 -

5. Serial port on pins RXL /
TXL. This port is
disabled by default
since it uses two I/O
pins that are not
connected to headers
on the Arduino Due: the
pins controlling the RX
and TX LEDs next to the
Native USB port
(framed in red in the
image on the right).
These pins are
accessible as digital pins
72 (RX) and 73 (TX) on
the Arduino Due.
Despite their location
next to the Native USB
port they have no
connection to the port
and can be freely
controlled by software.
To add a serial interface
using these pins do the
following:

 (Optional but
recommended): remove the RX/TX LEDs. I did try
leaving the LEDs in place and just soldered onto the
LEDs themselves and serial communication did work.
However, the LEDs go to +3.3V through a 1k resistor
which could possibly interfere with the serial signals.
Your mileage may vary.

 Solder wires to the pads on the left side of the LEDs (the
side closer to the “RX” and “TX” labels). These will be
the RX and TX wires for the serial connection. Take the
required GND wire for the connection from any GND
connection on the Arduino.

 In file host_due.h, change
#define USE_SERIAL_ON_RXLTXL 0
to

- 15 -

#define USE_SERIAL_ON_RXLTXL 1

and upload the sketch to the Arduino.

The pins are 3.3V and are not 5V tolerant. This port uses a
software UART implementation which can be configured from
110 to 38400 baud.

Interacting with software via a terminal

The main way to interact with programs on the Altair is via a terminal

connected to a serial interface. The two most common serial interface

cards used with the Altair were the 88-SIO and 88-2SIO. The 88-SIO

offered one serial port which (although configurable via jumpers) was

most often set to use I/O addresses 0 and 1. The 88-2SIO offered two

serial ports (again configurable via jumper) that usually used addresses

16/17 (first port) and 18/19 (second port).

Most systems had at least one of these installed and most programs

would expect to interact via either an 88-SIO at addresses 0/1 or the

first port of an 88-2SIO at addresses 16/17. Some programs used the

SW15-8 sense switches at startup to determine which one to use. For

example:

4k BASIC and Programming System II: If SW11 is up then use an 88-2SIO

at 16/17 otherwise use 88-SIO at 0/1.

16k ROM BASIC: If SW13 is up then use 88-SIO at 0/1 otherwise use 88-

2SIO at 16/17.

The simulator simulates a system with both an 88-SIO and 88-2SIO

installed at their default addresses. In the default configuration, both

the 88-SIO and the first port of the 88-2SIO are mapped to the Arduino’s

main serial port, i.e. any output that goes to either one will show up on

a terminal connected to the Arduino and inputs coming from the

terminal will be sent to both cards. This was not possible in reality (it

would mean to hook up one terminal to two serial ports) but in the

simulated environment it works just fine. It allows users to not have to

worry about properly setting sense switches before starting BASIC or

other programs.

- 16 -

The one drawback is that when changing device settings in the

configuration menu, you must first know which device is being used.

The easiest way to determine that is to just un-map one of them in the

configuration and see if the serial I/O still works.

7-bit vs 8-bit characters. Early terminals used only 7-bit characters and

a number of Altair programs (such as 4k BASIC) use the 8th bit of a

character to define end-of-string which would work fine since the

terminal would ignore the 8th bit anyways. Modern terminals use the 8th

bit and so display some strange graphics character for characters where

the 8th bit is set. The simulator (in the serial device settings) offers a way

to filter out the 8th bit by enabling the “Use 7 bits” setting.

Uppercase input. Early terminals only had upper case characters and so

early Altair programs (4k BASIC again) cannot handle lower-case

characters. The simulator offers a serial device setting (“Serial input

uppercase”) that will automatically covert incoming lower-case

characters to upper case.

Backspace handling. Some early Altair software does not use the

backspace (0x08) character and instead has its own way of undoing

inputs, e.g. in 4k BASIC receiving an underscore (“_”) will print the

underscore but internally delete the last character from the input

buffer, i.e. have the functionality of a backspace. Other programs expect

a “delete” (0x7f) character instead of “backspace” (0x08). The simulator

offers some help by offering an option to translate between backspace

and underscore or backspace and delete.

When converting back from underscore to backspace, the simulator

actually sends a backspace-space-backspace sequence to delete the

character left of the cursor even if the connected terminal does not do a

destructive backspace.

Pasting text into the terminal. When pasting large amounts of text into

the terminal, the terminal program usually sends that text at the given

baud rate. If the connection is using 9600 baud, then a new character

will arrive at the simulator about every millisecond. With many

simulated programs (and especially when running the simulator on the

Arduino Mega) this can cause characters to get lost because the

- 17 -

simulated program cannot keep up processing the characters at the rate

that they arrive.

There are two ways to deal with this:

1. Lower the baud rate of the host serial interface and your

terminal program, which forces the terminal to send characters

at a lower speed. This works to some degree but (a) you may

not be able to reduce the baud rate enough to guarantee that

no characters are lost (especially when using the Mega) and (b)

reducing the baud rate will also lower the transmission speed

from the simulator to your terminal, which can become

annoying when outputting large amounts of text.

2. The better option is to tell your terminal to add a delay between

sending characters. TeraTerm allows this by changing the

“Transmit delay” settings (In the Setup->Serial port menu). The

terminal will still send at the given (fast) baud rate (and more

importantly receive at the fast baud rate) but will wait for a

specified amount of time before sending the next character.

Moreover, TeraTerm allows to specify a delay after a carriage

return/line feed. This is important because some programs

(such as BASIC) need additional time after seeing a carriage

return to process the input.

Some testing has shown that for the Arduino Mega, setting the

Transmit delay to 10msec/char and 200msec/line works well

even with the host serial rate set at 115200 baud. On the Due,

3msec/char and 25msec/line should be sufficient. These are just

some basic benchmarks. The optimum setting (not too

much delay but also not too little) will also depend on the baud

rate.

Unfortunately it appears that Putty does not support a transmit

delay.

- 18 -

Printer Emulation

One printer can be emulated by enabling the corresponding options in

the configuration menu (see Configuratoin Menu section below). The

printer emulation can be configured for an “Okidata” (88-LP) printer or

“Centronics C700”. Most of the included software (e.g. BASIC) support

both (enter “O” or “C” at the LINEPRINTER prompt).

In addition to the Okidata and Centronics printers, a “generic” printer

option is available. The generic printer does not perform any processing

of input data for formatting or linefeeds/carriage returns. It forwards all

data directly to the configured serial port. The generic printer option also

allows to specify values for the printer control port (port address 02h) if

the printer (i.e. serial port) is busy and not busy. The default values

support using a printer in CP/M.

Note that in prior versions of the firmware, the “Okidata” printer

emulation included some workarounds to allow that printer to be used

in CP/M (although flow control via the status register did not work

properly). With the addition of the “generic” printer which works

perfectly in CP/M those have been removed, i.e. the Okidata printer no

longer works with the CP/M version included on the disks. Use the

“generic” printer instead.

Printer emulation does support interrupts. If interrupts are enabled by

the software then the printer emulation automatically switches to real-

time mode, i.e. it roughly simulates the time it would take the printer to

print. This is necessary because otherwise (in an interrupt driven

software system such as Time-Sharing BASIC) the printer would rapidly

produce interrupts, disrupting access to other devices. Real-time

operation can be forced even if interrupts are not enabled by enabling

the “Force real-time mode” option in the configuration menu.

The printer output can be directed to either one of the host’s serial ports.

- 19 -

MITS Disk Controller Support

Disk drive support is optional and requires a SD card attached to the

Arduino Due’s SPI header (the 2-row, 6-pin header marked “SPI”). See

the Wiring SD card to Arduino DUE section at the end of this document

about how to physically hook up the card.

Disk drive support is not available in the Arduino Mega build, mainly for

two reasons: 1. The SPI pins on the Mega are directly connected to

some general I/O pins which are already used for the front panel and 2.

The Mega only provides 6k of emulated RAM. Most disk based

programs require more than that.

Disk drive support emulates a MITS 88-DCDD disk drive controller with

up to 16 drives attached.

The following files are expected to be found in the root directory of the

(FAT format) card (the disks subdirectory in the source archive

contains several disks including CP/M and Altair DOS):

 DISKxx.DSK (where xx is a 2-digit hexadecimal number): Disk

images that the simulator can mount.

 DISKDIR.TXT: A text file whose contents will be sent to the serial

connection (i.e. shown to the user) if front panel switches are

set to 0001xxxx00000000 and the AUX2 switch is pressed down.

This should contain information about each of the DISKxx.DSK

files

To mount disks in the drive, use the AUX2 down switch:

 Set SW15-0 to: 0001nnnnDDDDDDDD where nnnn is a 4-bit

number selecting the drive (i.e. drive 0-15) and DDDDDDDD is

an 8-bit number selecting the disk number and press AUX2

down.

 The 8-bit disk number corresponds to the xx in the DISKxx.DSK

files on the SD card.

 For example, setting SW15-0 to 0001 0010 0000101 and

pressing AUX2 down will mount disk number 5 in drive 2.

- 20 -

 Selecting disk number 0 is a special case. If disk 0 is selected for

mounting, it will not be mounted but instead the contents of

the DISKDIR.TXT file will be sent to the serial output (i.e. shown

to the user).

Note that that means a file named DISK00.DSK can not be

mounted.

 If a disk is already mounted in the drive the mounted disk will

be unmounted before mounting the new disk

 If the disk file does not exist, it is like inserting an empty disk in

the drive. If the operating system writes to the disk, the

selected disk file will be created. So inserting a non-existent disk

and then formatting that disk via the operating system (e.g.

CP/M) will create a new empty disk.

 It is possible to mount the same disk in multiple drives. The

simulator has no problem with that but the running operating

system may get confused.

To unmount a disk from a drive, use the AUX2 up switch:

 Set SW15-0 to: 0001nnnnxxxxxxxx where nnnn is a 4-bit number

selecting the drive (i.e. drive 0-15) and press AUX2 up.

 It is not necessary to unmount disks before turning off the

computer. Each write operation to a disk gets flushed to the SD

card immediately so turning the computer off with disks

mounted will not lose data.

To run a bootable disk image, first mount the disk and then start the

Disk Boot ROM:

 Set SW0-7 to 00001000 (to select Disk Boot ROM)

 Press AUX1 down

 This will install the Disk Boot ROM at 0xFF00 and immediately

start it. If a bootable disk has been mounted it should

automatically start now

- 21 -

Tarbell Disk Controller Support

In addition to the MITS 88-DCDD disk controller, the simulator can also

emulate the Tarbell single density FDC with up to 4 drives attached to

the controller.

Tarbell disk controller support is optional and requires a SD card

attached to the Arduino Due’s SPI header (the 2-row, 6-pin header

marked “SPI”). See the Wiring SD card to Arduino DUE section at the

end of this document about how to physically hook up the card.

To enable Tarbell disk controller support in the firmware, set the

“#define NUM_TDRIVES n” setting in

config.h to a value of n between 1 and 4.

The following files are expected to be found in the root directory of the

(FAT format) card (the disks subdirectory in the source archive

contains two different versions of CP/M):

 TDISKxx.DSK (where xx is a 2-digit hexadecimal number): Disk

images that the simulator can mount.

 TDISKDIR.TXT: A text file whose contents will be sent to the

serial connection (i.e. shown to the user) if front panel switches

are set to 0101xxxx00000000 and the AUX2 switch is pressed

down. This should contain information about each of the

DISKxx.DSK files

To mount disks in the drive, use the AUX2 down switch:

 Set SW15-0 to: 0101xxnnDDDDDDDD where nn is a 2-bit

number selecting the drive (i.e. drive 0-3) and DDDDDDDD is an

8-bit number selecting the disk number and press AUX2 down.

 The 8-bit disk number corresponds to the xx in the TDISKxx.DSK

files on the SD card.

 For example, setting SW15-0 to 0101 0010 0000001 and

pressing AUX2 down will mount Tarbell disk number 1 in drive

2.

 Selecting disk number 0 is a special case. If disk 0 is selected for

mounting, it will not be mounted but instead the contents of

- 22 -

the TDISKDIR.TXT file will be sent to the serial output (i.e. shown

to the user).

Note that that means a file named TDISK00.DSK cannot be

mounted.

 If a disk is already mounted in the drive the mounted disk will

be unmounted before mounting the new disk

 If the disk file does not exist, it is like inserting an empty disk in

the drive. If the operating system writes to the disk, the

selected disk file will be created. So inserting a non-existent disk

and then formatting that disk via the operating system (e.g.

CP/M) will create a new empty disk.

 It is possible to mount the same disk in multiple drives. The

simulator has no problem with that but the running operating

system may get confused.

To unmount a disk from a Tarbell drive, use the AUX2 up switch:

 Set SW15-0 to: 0101nnnnxxxxxxxx where nnnn is a 4-bit number

selecting the drive (i.e. drive 0-15) and press AUX2 up.

 It is not necessary to unmount disks before turning off the

computer. Each write operation to a disk gets flushed to the SD

card immediately so turning the computer off with disks

mounted will not lose data.

To run a bootable disk image, first mount the disk and then start the

Tarbell Disk Boot ROM:

 Set SW0-7 to 00010000 (to select Tarbell Disk Boot ROM)

 Press AUX1 down

 This will install the Tarbell Disk Boot ROM at 0xFF00 and

immediately start it. If a bootable disk has been mounted it

should automatically start now

- 23 -

Hard Disk Support

Just like disk drive support, hard disk (88-HDSK) support requires a SD

card and is not available on the Arduino Mega build. See the first two

paragraphs of the “MITS Disk Controller Support” section above for

more details.

The 88-HDSK controller could handle up to 4 units, each holding up to 4

platters. In its default configuration, only one unit is enabled, which

should be sufficient for most cases. Change the NUM_HDSK_UNITS

setting in the config.h file to enable more (at most 4) units.

The following files are expected to be found in the root directory of the

(FAT format) card (the disks subdirectory in the source archive

contains some hard disk images including the Altair Accounting System):

 HDSKxx.DSK (where xx is a 2-digit hexadecimal number): Disk

images that the simulator can mount.

 HDSKDIR.TXT: A text file whose contents will be sent to the

serial connection (i.e. shown to the user) if front panel switches

are set to 0011xxxx00000000 and the AUX2 switch is pressed

down. This should contain information about each of the

HDSKxx.DSK files

To mount hard disk images on a unit/platter, use the AUX2 down

switch:

 Set SW15-0 to: 0011uuppDDDDDDDD where uu is the hard disk

unit (2-bit, 0-3) and pp is the platter number within that unit (2-

bit, 0-3). DDDDDDDD is an 8-bit number selecting the hard disk

image number. Then press AUX2 down.

 The 8-bit disk image number corresponds to the xx in the

HDSKxx.DSK files on the SD card.

 For example, setting SW15-0 to 0011 0001 0001100 and

pressing AUX2 down will mount HDSK0C.DSK on platter 1 of unit

0.

 Selecting hard disk image number 0 is a special case. If disk

image 0 is selected for mounting, it will not be mounted but

instead the contents of the HDSKDIR.TXT file will be sent to the

- 24 -

serial output (i.e. shown to the user).

Note that that means a file named HDSK00.DSK can not be

mounted.

 If a hard disk image is already mounted in the drive the

mounted disk will be unmounted before mounting the new disk

 If the hard disk image file does not exist, it is like inserting a new

platter in the hard disk. If the operating system writes to the

hard disk, the selected image file will be created. Inserting a

non-existent image and then formatting via the operating

system (e.g. using ADEXER in CP/M) will create a new empty

image.

 It is possible to mount the same image in multiple drives. The

simulator has no problem with that but the running operating

system may get confused.

To unmount an image from a unit/platter, use the AUX2 up switch:

 Set SW15-0 to: 0011uuppxxxxxxxx where uu is the hard disk unit

(2-bit, 0-3) and pp is the platter number within that unit (2-bit,

0-3). Then press AUX2 up.

 It is not necessary to unmount images before turning off the

computer. Each write operation to an image gets flushed to the

SD card immediately so turning the computer off with disks

mounted will not lose data.

To run a bootable hard disk image, first mount the image and then start

the Disk Boot ROM:

 Set SW0-7 to 00001110 (to select Hard Disk Boot ROM)

 Press AUX1 down

 This will install the Hard Disk Boot ROM at 0xFC00 and

immediately start it. If a bootable image has been mounted it

should automatically start now. The Hard Disk Boot ROM always

boots from unit 0, platter 0.

- 25 -

Cromemco Dazzler Support

In 1976 the Cromemco Dazzler graphics card for the Altair was released.

The card accesses the Altair’s memory via DMA to read pixel data and

produces a picture of 32x32, 64x64 or 128x128 pixels, depending on

memory configuration and color mode. While these resolutions seem

almost laughable today, back in 1976 this was a major accomplishment.

The Simulator (when running on the Arduino Due) can emulate the

Dazzler when paired with a client to display the picture. For more

information on the Dazzler client, see my project at:

https://www.hackster.io/david-hansel/dazzler-display-for-altair-

simulator-3febc6

To enable support for the Dazzler in the Simulator, do the following:

 Download the latest release of the Simulator firmware

 Change the USE_DAZZLER setting in config.h from 0 to 1

 Re-upload the modified firmware to the Arduino

 In the configuration menu, there should now be a “Configure

Dazzler” setting.

Change that setting to “USB Native Port”.

There are a number of Dazzler example programs provided on DISK10.

To use them, mount DISK10 in drive 0 and start the disk boot loader.

This will boot CP/M. You can now start the different programs on the

disk from within CP/M. Note that none of these programs has any exit

mechanism, so to run a different program you will have to stop and

reset the Altair and boot into CP/M again.

 Kaleidoscope (also available via AUX1 down)

 DazzleDoodle (very basic drawing program operated by joystick)

 DazzleMation (basic animation program, needs Cromemco

serial card, see below)

 DazzleWriter (allows to type text, needs Cromemco serial card,

see below)

 Life (Conway's game of life, expects input on first port of 2-SIO)

 Labyrinth (needs joystick)

- 26 -

 Chase (needs two joysticks)

 Space War! (needs two joysticks)

 Tank War! (needs z80 processor and two joysticks)

 Ambush (needs Z80 processor and one joystick)

 Dogfight (needs Z80 processor and two joysticks)

 Gotcha! (needs two joysticks)

 4-d Tic-Tac-Toe

 Chess (Microchess using the Dazzler as a graphics display)

For programs requiring a joystick, see the joystick instructions in the

Dazzler project. Note that the Windows client recognizes joysticks

plugged into the computer running the client.

For programs that need a Cromemco serial card, make sure the “SIO

revision” setting in the SIO card configuration is set to “Cromemco”.

For programs requiring a Z80 processor, make sure the simulator is

properly configured to emulate a Z80 processor.

Processor Technology VDM-1 Support

The VDM-1 card, created in 1975 by Processor Technology, was the first

video card for the Altair. It could be directly connected to a monitor (or

a modified TV) and produced a display of 16 lines with 64 characters

each.

The screen contents could be directly modified by writing to a 1k region

of main memory which allowed for much faster screen compared to a

serial terminal.

To emulate the VDM-1, the simulator must be paired with a client to

display the picture. The client can either be a Windows computer or one

of Geoff Graham’s ASCII Video Terminals updated with a modified

firmware. For more information see: https://github.com/dhansel/VDM1

To enable support for the VDM-1 in the Simulator, do the following:

 Download the latest release of the Simulator firmware

 Change the USE_VDM1 setting in config.h from 0 to 1

 Re-upload the modified firmware to the Arduino

- 27 -

 In the configuration menu, there should now be a “Configure

VDM-1” sub-menu.

 Within the VDM-1 sub-menu, change the “Map to interface”

setting to the interface that the VDM-1 client is connected to.

For more information on how to connect a VDM-1 client, see

https://github.com/dhansel/VDM1/blob/master/README.md

The VDM-1 card had several jumpers that could be used to change

certain settings. Within the VDM-1 sub-menu of the simulator’s

configuration menu you will find options that mirror those jumpers:

 Memory address

The base address of the RAM that the VDM-1 uses as its screen

memory can be configured in 1k steps. Note that most

programs assume the screen memory is at CC00 (the default).

 DIP switch 1+2

Switches between regular display, inverted display and display

off.

 DIP switch 3+4

Changes display behavior of cursor characters (characters with

ASCII code >127).

 DIP switch 4+5

Controls blanking behavior for CR (0x0d) and VT (0x0B)

characters.

For more information on the specifics of the DIP switch settings please

consult the original VDM-1 manual:

https://github.com/dhansel/VDM1/raw/master/doc/vdm1.pdf (mostly

section 3 - theory of operation).

The VDM-1 GIT repository contains some programs that use the VDM-1:

https://github.com/dhansel/VDM1/tree/master/programs

Alternatively, the included DISK11 contains those programs (and some

more). DISK11 contains a specialized CP/M that outputs to the VDM-1.

To use this disk, do the following:

 In the VDM-1 configuration menu, set “Map keyboard to” to

2SIO port 1.

- 28 -

 Run the “Cuter for VDM-1” program by setting switches SW7-0

to 00010000 and pressing AUX1 down

 Press STOP (not actually using CUTER, it just needs to be in RAM

for CP/M to use its output routines)

 Mount DISK11 by setting SW12, SW4, SW1 up (all others down)

and pressing AUX2 down

 Run the disk boot ROM by setting SW7-0 to 00001000 and

pressing AUX1 down

This should show a CP/M boot prompt on the VDM-1 and accept input

from the keyboard connected to the VDM-1.

Configuration Menu

The simulator configuration menu can be entered by holding STOP up

and raising AUX1. Settings are:

 Enable profiling

If enabled and the simulator is running (i.e. not in STOP mode) a

message showing the current performance of the simulator is

written to the (primary) serial output.

 Set throttle delay (Arduino Due only)

Allows to throttle simulator performance. Throttling is done by

busy-waiting, i.e. an empty loop counting down from the value

selected here to zero. If set to “auto adjust”, the simulator

evaluates performance about 40x a second and automatically

adjusts the throttle delay to get as close to 100% of the original

(i.e. 2MHz clock frequency) as possible. If profiling is enabled

too then the effect of changes in the throttle delay can easily be

observed.

 Enable serial panel

Shows a simple representation of the front panel lights and

switches on the (primary) serial output. Mostly useful when

STANDALONE mode is enabled.

- 29 -

 Enable serial input

When stopped, the simulator processes the inputs described in

the “Debugging capabilities” section below.

 Enable serial debug

Print processor status and disassembled opcode during single

stepping

 Processor (only if processor switching is enabled in config.h)

Switch between Intel 8080 and Zilog Z80 processor

 Configure memory

See “Memory configuration” section below.

 Aux1 shortcut program

Sets the program to be run when the AUX1 switch is raised. This

can be any if the built-in programs

available via AUX1 down or a disk. If a disk is selected, pushing

up AUX1 will mount the disk and then install and run the disk

boot loader.

 Configure host serial

See “Host serial interface configuration” section below.

 Configure serial cards

See “Serial device configuration” section below.

 Configure printer

See “Printer configuration” section below.

 Configure Disk Drives (only if disk drive emulation is enabled in

config.h)

See “Disk Drive configuration” section below.

 Configure Hard Disks (only if hard disk emulation is enabled

config.h)

See “Hard Disk configuration” section below.

 Configure Dazzler (only if Dazzler emulation is enabled in

config.h)

See “Cromemco Dazzler support” section.

 Configure VDM-1 (only if VDM-1 emulation is enabled in

config.h)

See “VDM-1 support” section.

 Configure Interrupts

See “Interrupts configuration” section below.

- 30 -

 Manage Filesystem

Starts file system manager (see File System Manager section

below).

 File System manager for SD card (only if SD card is attached)

Starts a file system manager to modify the contents of the SD

card. The file manager also allows transferring files from and to

the card via XMODEM protocol.

 Save configuration

Saves the current configuration. Up to 256 different

configurations can be saved.

Configuration #0 is automatically loaded when the simulator

starts.

 Load configuration

Loads a saved configuration

 Reset to defaults

Resets all settings to their default values.

Memory configuration

 RAM size

Configures the size of the emulated RAM in steps of 1k. The

emulated RAM starts at address 0 and is contiguous from there.

 Clear memory on powerup

If enabled, the emulated RAM memory will be cleared (set to 0)

when the simulator starts up.

Otherwise, memory content is random (as with the original).

 Clear memory now

Clear the emulated RAM memory (set to all 0)

 Add ROM

Adds a new ROM into the emulator. The ROM content must be

sent in Intel HEX format. A name can be specified to make it

easier to identify the ROM later.

 Remove ROM

Remove a previously added ROM

 Auto-start ROM

Choose a ROM to auto-start (or enter 0 to disable auto-start).

- 31 -

When the Altair is turned on or the RESET button is pressed, the

program counter (PC) will be set to the first address of the

selected ROM. Additionally, if auto-start is enabled then the

Altair will automatically enter RUN mode on startup.

Host serial interface configuration

 Host Serial … settings

For serial ports that support configuration settings other than

baud rate, this opens a sub-menu to

configure baud rate, number of bits, parity and number of stop

bits. Otherwise it toggles the baud

rate used for the port (those ports always use 8N1

configuration). Note that different ports may have different

ranges of possible baud rates. See “Serial ports” section above.

 Primary host serial (Arduino Due only)

Selects which serial interface is used as the primary interface.

All simulator related output (such as the configuration menu) is

sent to the primary serial interface. Also, when auto-detecting

the serial device for capturing/replaying data, only devices

mapped to the primary serial interface are considered.

 Apply host serial settings

When making changes to the host serial settings (baud rate,

primary interface), those are not applied immediately. Select

this option to apply the modified settings.

Interrupt configuration

The simulator can emulate a 88-RTC-VI board which provides a real-time

clock and vector interrupt capability

(both are necessary to run Altair Timesharing Basic). The following

settings can be configured:

 Real Time Clock

Can be either disabled or set to produce an interrupt at one of

- 32 -

the following frequencies:

0.06, 0.6, 6, 10, 60, 100, 1000 or 10000Hz

Note that (despite the name) the frequency is based on

simulated time, not real time.

 Vector Interrupt Board

If set to “Interrupts connected directly to CPU” then the Vector

Interrupt functionality is disabled.

In that case, the device interrupt settings below can only be

changed between “connected” or “not connected”. Note that

the simulator (unlike the original) allows to connect multiple

devices to the CPU’s interrupt line.

If this is set to “Use Vector Interrupt Board” then each device

interrupt can be assigned a level/priority according to the 88-

RTC-VI board’s functionality. Consult the 88-RTC-VI board’s user

manual for more

information about the interrupt levels.

 [Device] interrupt

This configures the connection of the interrupt line for each of

the listed devices. If the VI board is disabled, then an interrupt

line can either be connected or not connected to the CPU. If the

VI board is enabled, then the interrupt can be connected to a

specific level on the VI board.

Disk drive configuration

If MITS disk controller support is enabled, this menu allows to modify

drive related settings:

 Force real-time mode

If a running program that interacts with the disk drive does not

enable interrupts for the drive then the drive emulation works

in a rapid mode in which new data is presented to the program

every time it checks if new data is available. This makes for very

fast disk emulation. If interrupts are enabled for the drive then

it operates in real-time mode, only producing interrupts when

new data would be available on a real drive.

- 33 -

Enabling the “Force real-time mode” option will always operate

the drive in the slower real-time mode, making for a more

realistic LED blinking pattern while interacting with the disk

drive.

 Drive n mounted disk image

Shows which disk image (DISKxx.DSK) is currently mounted in

which drive and cycles through the available images.

Tarbell disk drive configuration

If Tarbell disk controller support is enabled, this menu allows to modify

drive related settings:

 Drive n mounted disk image

Shows which disk image (TDISKxx.DSK) is currently mounted in

which drive and cycles through the available images.

Note that Tarbell disk emulation currently does not support interrupts

and does not have a real-time mode.

Hard disk configuration

If hard disk support is enabled, this menu allows to modify drive related

settings:

 Force real-time mode

If a running program that interacts with the hard disk does not

enable interrupts for the drive then the drive emulation works

in a rapid mode in which new data is presented to the program

every time it checks if new data is available. This makes for very

fast hard disk emulation. If interrupts are enabled for the hard

disk then it operates in real-time mode, only producing

interrupts when new data would be available on a real drive.

Enabling the “Force real-time mode” option will always operate

- 34 -

the drive in the slower real-time mode, making for a more

realistic LED blinking pattern while interacting with the hard

disk.

 Hard disk [unit n] platter m image

Shows which image (HDSKxx.DSK) is currently mounted in which

unit/platter and cycles through the available images. The [unit

n] is only shown if the simulator is set up to emulate more than

one unit

(NUM_HDSK_UNITS setting in config.h).

 Reset hard disk controller

Resets the controller. Mainly this sets the CRDY flag. Do this if

emulated software instructs you to turn the hard disk unit off

and back on.

Printer configuration

To configure printer options, select “(5) Configure printer” in the main

configuration menu. The following configuration options are available

for printer emulation:

 Printer type

Select which printer should be emulated or turn off printer

emulation:

Okidata – emulates an Okidata (88-LPC) printer at I/O ports 2/3

C700 – emulates a Centronics C700 printer at I/O ports 2/3

Generic – generic printer at I/O ports 2/3. This forwards all data

sent to the printer directly to the configured serial port.

 Map printer to interface

Selects the host’s serial interface to which the emulated

printer’s output should be directed

 Force real-time mode

If enabled, the printer emulation will enforce timing similar to a

real printer (although not necessarily matching the actual

emulated printer model). Provides a printer-like effect when

watching the output.

 Status register busy value (only for Generic printer type)

Value that the printer status register (I/O port 2) should show

- 35 -

when the printer (i.e. the serial port) is busy and cannot accept

more data.

 Status register ready value (only for Generic printer type)

Value that the printer status register (I/O port 2) should show

when the printer (i.e. the serial port) is ready to accept more

data.

 Serial device configuration

The simulator emulates up to six serial devices connected to the Altair:

 88-SIO card at port 0x00/0x01

 88-ACR audio cassette interface at port 0x06/0x07

 88-2SIO, card with serial 1 at port 0x10/0x11 and serial 2 at port

0x12/0x13

 A second emulated 88-2SIO card can be enabled by changing

the following setting before uploading the sketch to the

Arduino. In file config.h change:

“#define USE_SECOND_2SIO 0” to “#define
USE_SECOND_2SIO 1”

The second 88-2SIO has serial 1 at port 0x14/0x15 and serial 2

at pot 0x16/0x17

For each of these devices the following settings can be configured in the

configuration menu:

 Map to host interface

Select to which host interface input/output of device gets

directed.

When using Arduino Mega, there is only one host interface

(Serial). When using the Due, there is the primary and

secondary interface. The physical interface (Serial/Serial1) that

the primary interface maps to can be picked on the main setup

screen. The other one becomes the secondary interface.

 Simulated baud rate

If receive interrupts are disabled for a serial device and “Force

baud rate” is off, the simulator just makes a new byte available

for playback whenever the running program requests one. That

way, playback runs as maximum speed without the program

- 36 -

missing any characters. If receive interrupts are enabled

however, the characters must be sent at a rate that gives the

running program a chance to keep up. Similarly, if transmit

interrupts are enabled, the program expects some time to pass

between sending characters.

This setting selects the baud rate at which input/output is

processed. Note that the timing is based on simulated time, not

real time. That means that on the Mega (since it is running at

25% original speed) a rate of 110 baud may actually look more

like 25 baud in real time.

 Force baud rate

If this option is on then the simulator will always use the given

baud rate for receive and transmit, even if interrupts are

disabled. This can be used to get more realistic timing for code

that is not using interrupts.

 Example playback NULs

When playing back data to the running program (e.g. the AM2

assembler), the program may need some extra processing time

after a carriage return to process the previous line. This is done

(as it would have been on the original) by sending a number of

NUL (0) bytes after a carriage return. Note that this setting only

affects the case when playing back examples stored in the

simulator, not for captured data being played back. For

captured data, make sure to set the program from which you

are capturing to produce the proper number of NULs.

 Use 7 bits

Some Altair programs (e.g. 4k BASIC) use the 8th bit of a

character to signal end-of-string, assuming that the output

device only uses 7 bits. If this is the case, then the last character

of any string will appear mangled in the output. If this option is

enabled, the simulator will always clear the 8th bit before

sending it to the serial output.

If the option is set to “autodetect”, the s will detect (for some

known programs) based on the memory location of the “OUT”

instruction whether the bit needs to be cleared or not.

 Serial input uppercase

Some Altair programs (e.g. 4k BASIC) only display uppercase

- 37 -

characters and expect all input to be uppercase characters. If

this option is enabled, the simulator will translate any incoming

lower-case character to upper-case.

If the option is set to “autodetect”, the simulator will detect (for

some known programs) based on the memory location of the

“IN” instruction whether the translation is required.

 Translate backspace to

Allows to map the backspace character to other characters

expected by different ALTAIR programs:

off – backspace is sent as backspace (ASCII 8)

underscore – backspace is sent to the simulated program as an

underscore ‘_’ (ASCII 95) and an underscore sent by the

simulated program is interpreted as backspace. This is usefule

for 4k BASIC and ROM BASIC.

delete – backspace sent to the simulated program as a delete

(ASCII 127) character. Time-sharing BASIC expects this

autodetect – the simulator attempts to automatically determine

which conversion is necessary by the memory location of

IN/OUT opcode.

 Enable CLOAD/CSAVE traps (for ACR device only)

If this option is enabled then the simulator will catch BASIC

CLOAD/CSAVE calls and automatically save/load to the internal

simulator storage, avoiding the need to manually start cassette

capture/replay.

 SIO board revision (for SIO device only)
Very early Altair SIO board had slightly different arrangement of

bits in the status register. This design (revision 0) was changed

very quickly. Very few programs exist that require the rev0

board, for example the original prototype Microsoft BASIC. This

setting allows switching between the revisions.

The setting also allows to switch the SIO card into “Cromemco”

mode which emulates a Cromemco serial card used by some of

the Dazzler programs. See “Cromemco Dazzler support” below.

- 38 -

File System Manager

The emulator includes a very simple mini file system to store the

different types of data that can be saved/captured. The file system

manager can be invoked by selecting (M) in the configuration menu.

The file system manager supports the following commands:

 F: Format file system (erases all files)

 d: Delete a file from the file system

 r: Read a file and show contents on screen

Debugging Capabilities

When simulation is stopped (i.e. the WAIT LED is on) and the “Serial

debug” option is enabled in the configuration menu, the following keys

have a function (those marked as STANDALONE only work if

stand-alone mode is enabled in setup.h):

0-9,a-f STANDALONE only: Toggle SW0-15

/ STANDALONE only: Prompt for value to set SW0-15

r Run

o Stop

t Step

R Reset

! Hard reset (STOP+RESET)

X/x Examine/examine next

P/p Deposit/deposit next

U AUX1 up

u AUX1 down

s STANDALONE only: Capture serial data (AUX2 up)

l STANDALONE only: Play back captured serial data or

BASIC example (AUX2 down)

m STANDALONE only: Mount (hard) disk image (AUX2

down)

- 39 -

Q Protect

q Unprotect

> Run from address

B Add breakpoint (only if breakpoints enabled in

setup.h)

V Delete last breakpoint

D Disassemble (will prompt for start address, space

bar continues, any other key exits)

M Dump memory (will prompt for start address, space

bar continues, any other key exits)

n change number system

(hexadecimal/octal/decimal)

C Enter configuration menu

L Load a program or data through serial input into

simulated memory

 First value is start address, second value is length,

followed by data bytes

 (all values separated by spaces). Easier to enter data

this way than using the switches.

H Load a program in Intel HEX format through serial

input.

 https://en.wikipedia.org/wiki/Intel_HEX

 Useful to deposit programs and/or data directly into

the simulated memory.

h Dump memory in Intel HEX format through serial

output.

Example program: Kill-the-bit game

To enter the kill-the-bit game below into the ALTAIR:

1. Activate RESET

2. Set SW7-0 to first byte of program (041 octal, 00 100 001

binary)

3. Activate DEPOSIT

4. Set SW7-0 to next byte of program

5. Activate DEPOSIT NEXT

6. Repeat steps 4-5 until all bytes have been entered

https://en.wikipedia.org/wiki/Intel_HEX

- 40 -

7. If running the simulator on an Arduino MEGA, the game runs

slow.

To compensate, change the content of memory location 006

from 016 to 056 (all octal).

To run the game:

1. Activate RESET

2. Set SW15-8 switches to 0

3. Activate RUN

To save the game to Arduino storage:

1. Set SW15-8 to 0 (selects memory page 0)

2. Set SW7 to 1 (selects memory page operation)

3. Set SW6 to 1 (selects memory page save)

4. Set SW5-0 to 0 (selects file number 0)

5. Activate AUX1 down

To load the game from Arduino storage:

1. Set SW15-0 as above, except SW6 to 0 (selects memory page

load)

2. Activate AUX1 down

 ; Kill the Bit game by Dean McDaniel,

May 15, 1975

 ;

 ; Object: Kill the rotating bit. If you

miss the lit bit, another

 ; bit turns on leaving two bits

to destroy. Quickly

 ; toggle the switch, don't

leave the switch in the up

 ; position. Before starting,

make sure all the switches

 ; are in the down position.

 ;

0000 org 0

0000 210000 lxi h,0 ; initialize

counter

0003 1680 mvi d,080h ; set up

initial display bit

0005 010E00 lxi b,0eh ; higher

value = faster

- 41 -

0008 1A beg: ldax d ; display bit

pattern on

0009 1A ldax d ; ...upper 8

address lights

000A 1A ldax d

000B 1A ldax d

000C 09 dad b ; increment

display counter

000D D20800 jnc beg

0010 DBFF in 0ffh ; input data

from sense switches

0012 AA xra d ; exclusive

or with A

0013 0F rrc ; rotate

display right one bit

0014 57 mov d,a ; move data

to display reg

0015 C30800 jmp beg ; repeat

sequence

0018 end

Here is the program in octal for easier entry into

the Altair:

000: 041 000 000 026 200 001 016 000

010: 032 032 032 032 011 322 010 000

020: 333 377 252 017 127 303 010 000

Loading 4k BASIC the old-school way

The simulator provides a quick and easy way to load 4k BASIC by setting
SW0-7 to 00000101 and pressing AUX1 down (see “Aux1 down” section
above).

However, it is also possible to load 4k BASIC the original (slow) way via a
boot loader.

Here’s how to load BASIC as if it came from a paper tape reader:

 Start the configuration editor and select (1) to configure the
SIO device

 Make sure the device is mapped to the host serial port to
which your terminal is connected

 Set the “Use 7 bits”, “Serial input uppercase” and “Translate
Backspace to” settings to “autodetect”

- 42 -

 Set the simulated baud rate to 110 baud. Obvioulsy you can
choose other baud rates here but 110 baud is the speed at
which a typical TeleType tape reader operated. Note: the
baud rate is based on simulated time (not real time), so
when running on the Arduino Mega, 110 baud will be closer
to 25 baud. All time estimates given below will be about 4x
longer. I suggest using 600 baud in that case.

 Enable the “Force baud rate” option

 Exit the configuration editor

 Key in the SIO bootloader (same procedure as entering kill-
the-bit above):
000: 041 256 017 061 022 000 333 000

010: 017 330 333 001 275 310 055 167

020: 300 351 003 000

 You may want to save the bootloader to a file so you can
reuse it later (same procedure as for the kill-the-bit example
above)

 Activate RESET (to reset program counter to 0, the start of
the boot loader)

 Activate RUN. The boot loader is now running. You should
see LEDs A0-A4 on, A5-A15 should be off.

 Set all switches to 0, then raise SW15, SW7 and SW6. Tthis
selects example 0xC0 (SW7-0=0xC0) which is the 4k BASIC
tape image to be played back to the SIO device (SW15-
13=100)

 Activate AUX2 down. The HLDA LED will come on indicating
that data replay has started.

 Immediately switch A15 down (otherwise the second stage
boot loader will attempt to load from ACR instead of SIO).

 For the first 17 seconds (while the first-stage boot loader is
running) the pattern on the A15-A0 LEDs should not change.

 After about 17 seconds the second stage (checksum) boot
loader should start running.
At that point, LEDs 15-12 should be off, A11-A7, A5, A2, A1,
A0 should be on and A6, A4 and A3 should be very faintly
flashing (about 10x per second, one flash per byte received).

 The second stage boot loader takes about 6 ½ minutes.
Once it is done, the LED pattern should change to A9-A7

- 43 -

and A3-A0 on, all others off and your termial should show
the “MEMORY SIZE?” prompt.

 After you answer the usual startup questions, BASIC should
be up and running.

 To load a BASIC example program, set SW0-7 to the
program number (e.g. 00011011 for a simple prime number
computation) and activate AUX2 down.

Altair Time Sharing BASIC

In its default configuration the simulator allows to run Altair Time
Sharing BASIC with two users, one on a terminal connected to the
Arduino Due’s main serial port (either use pins 0 and 1 or the USB
connection), the other using the Due’s Serial1 port at pins 18 and 19.
See the next page for information on how to enable 4 users.

To set up the simulator, enter the Configuration Editor and make sure
both the Serial and Serial1 baud rates are set properly for your two
terminals. The primary host serial port can be either one, whichever is
more convenient.

Next configure the emulated devices. Time Sharing BASIC only supports
2SIO cards, so set the SIO and ACR cards to “Not mapped”. Configure
the the two ports of the 2SIO card as follows:

 One mapped to primary, the other mapped to the secondary
host interface

 Simulated baud rate: 2400 (anything higher can cause problems
when trying to play back examples)

 Example playback NULs: 0

 Use 7 bits: on

 Serial input uppercase: on

 Translate backspace to: delete

Time Sharing BASIC relies on interrupts to give each user their proper
time slice and uses the 88-RTC-VI (Real-Time Clock and Vector Interrupt
board) to do so. Therefore, both the Real-Time Clock and Vector
Interrupts must be set up properly in the simulator. Select “Configure
Interrupts” sub-menu:

- 44 -

 Enable the Real-Time Clock and set it to 60Hz or 100Hz

 Enable the Vector Interrupt board (Use Vector Interrupt Board)

 Set the Disk drive interrupt to VI0

 Set the Real-Time Clock interrupt to VI1

 Set the 88-2SIO port 1 interrupt to VI2

 Set the 88-2SIO port 2 interrupt to VI2

 Set the 88-SIO and 88-ACR interrupts to “Not Connected”

For convenience, you may want to configure the “Aux1 shortcut
program” setting to the Time Sharing
Basic v1.1 disk. After everything is set, you may want to save the
configuration so you can later just load it.

Ready to run Time-Sharing BASIC!

First, connect your two terminals to the Serial and Serial1 connection on
the Arduino. Make sure the terminal settings match the host interface
baud rates set above (NOT the simulated baud rates).
Next, either press AUX1 UP (if you have configured it) or mount the
Time-Sharing BASIC disk and run the disk boot loader (see the MITS Disk
Controller Support section for more information). After a few seconds,
the ALTAIR T/S DISK BASIC V1.1 prompt should appear. Answer the
configuration questions as follows:

 RECONFIGURE? N (you may say L and verify that LEVEL1 is set to
TIMER and LEVEL2 is set to 2 – 16, 18)

 MEMORY SIZE? [just press ENTER]

 NUMBER OF USERS? 2

 TERMINAL ADDRESS? 16

 REGION SIZE? 20000

 TERMINAL ADDRESS? 18

 REGION SIZE? 20000

 MOUNT PASSWORD? [pick a password and press ENTER]

After the last prompt, a BASIC startup message (ALTAIR T/S DISK BASIC
V1.1) should show up on both terminals. Both terminals can be used
independently to interact with BASIC and load and run programs. Refer
to the ALTAIR Time Sharing BASIC manual (can be found online) on how
mount disks and load programs.

- 45 -

To allow more than two users, the simulator software must emulate a

second 88-2SIO card. To see if it is configured for two cards, start the

configuration editor. If it shows options to change settings for “2SIO-2

port 1” and “2SIO-2 port 2” (in addition to “2SIO port 1” and “2SIO port

2”) then it is already set. Otherwise, you need to update the software:

1. Load config.h in an editor

2. Change “#define USE_SECOND_2SIO 0” to “#define

USE_SECOND_2SIO 1”

3. Upload the simulator software to your Arduino

After that is done, start the configuration editor and map “2SIO-2 port

1” to the Arduino’s Native USB port. If you want an additional user,

follow the instructions in the “Serial Ports” section to enable the serial

port on the A6/A7 pins of the Arduino.

Configure the “2SIO-2 port 1” (and “2SIO-2 port 2”) ports following the

instructions for the other ports above, mapping them to Native USB

port (and Serial A6/A7). Likewise, configure the interrupts for the new

ports:

 Set the 88-2SIO port 1 interrupt to VI3

 Set the 88-2SIO port 2 interrupt to VI3

Now you can start Time-sharing basic either for three users (terminal
addresses 16, 18, 20, region sizes of 14000) or four users (terminal
addresses 16, 18, 20, 22, region sizes of 10000).

- 46 -

Music System

The Music System from Processor Technology was an affordable Music
System for the Altair that required only a a minimal hardware addition.
To learn more about the Music System and how it ran on the original
Altair, head over to http://altairclone.com/music_system.htm where
Mike Douglas has put together a great description.

You can run the music system on the simulator without any changes but
in order to get any actual sound you will need to add just a minimal
number of components: two capacitors and one resistor. Here’s the
schematic (taken from page 7 of the Music System documentation):

Connect the INTE input of the above schematic to the Arduino pin that
drives the INTE light (pin D12 on the Due, pin D38 on the Mega) and
GND to ground. The output is a line level mono signal that can be
connected to the input of any amplified speaker system. It is not strong
enough to drive headphones although but some mini earphones do
produce a (not very loud) sound when plugged in.

The music system consists of two parts:

 The music system itself, which allows to enter, compile and play
music (see User’s Guide)

 The ACUTER monitor (a version of the CUTER monitor ported to
the Altair and enhanced by Mike Douglas) which is necessary to
load and save music as well as handling input/output (see User’s
Guide). The music system can not run on its own without the
monitor.

http://altairclone.com/music_system.htm
http://deramp.com/downloads/altair/software/papertape_cassette/Music/The%20Music%20System/Music%20System%20User%20Manual.pdf
http://deramp.com/downloads/altair/software/papertape_cassette/Music/The%20Music%20System/Music%20System%20User%20Manual.pdf
http://deramp.com/downloads/altair/software/papertape_cassette/Music/The%20Music%20System/CUTER%20Manual.pdf
http://deramp.com/downloads/altair/software/papertape_cassette/Music/The%20Music%20System/CUTER%20Manual.pdf

- 47 -

To run the music system on the simulator, do the following:

 Enter the configuration monitor and set “throttle delay” to 12
(leaving it at automatic delay adds a weird vibrato effect when
playing music)

 Make sure that 2SIO port 1 is mapped to your primary host
interface

 Enable the “Serial input uppercase” option for the 2SIO port1

 Use a baud rate of no more than 9600 for your primary host
interface (otherwise importing the HEX data for music examples
will not work properly)

 Exit the configuration monitor

 Turn on switches SW0, SW2 and SW3, all others off

 Activate AUX1 down

 You should now see a “>” prompt in your terminal. This is the
command prompt of the ACUTER monitor.

 Enter “EX 0” to initialize the music system itself.

 You should see “THE MUSIC SYSTEM (C) 1977 SOFTWARE
TECHNOLOGY CORP”

 Enter “RET” to return to ACUTER (should see the “>” prompt)

Now we need to get some music into the system. Mike Douglas has
collected a number of music examples for the system. Follow this link to
get them (look in the subdirectories). To get an example into the
system, we use the HGET command that Mike has added to ACUTER:

 Enter “HGET” in ACUTER

 You should see “Send/Rcv on port 0”

 Now click on one of the HEX files of music examples from the
web site (e.g. SALLY.HEX) so it opens in your web browser. It
should show many lines looking like
:1008D3003430303130202F41495220574954482079

 Select all (likely CTRL-A) in your browser and copy it to the
clipboard (CTRL-C)

 Now paste it into your terminal.

 The terminal should show many lines listing addresses and
return to the “>” prompt when done.

http://deramp.com/downloads/index.php?dir=altair%2Fsoftware%2Fpapertape_cassette%2FMusic%2FThe+Music+System%2F

- 48 -

 Now enter “EX 0” to go back to the music system (there will be
no prompt after entering the system)

 Enter “FILE”, which causes the music system to scan memory for
the imported music file

 Next, enter “SCORE”, which compiles the music

 Finally, enter “PLAY” to play the compiled music. You should
hear the music in your speakers.

For a detailed description of the ACUTER and music system commands
refer to their User manuals: ACUTER Music System. Here’s an example
session (user input in bold italics, system output normal):

>EX 0

THE MUSIC SYSTEM (C) 1977 SOFTWARE TECHNOLOGY CORP.

<77-05-19>

08D3 08D3

RET

>HGET

[paste contents of SALLY.HEX into terminal]

08D3

08E3

08F3

[…]

10E3

>EX 0

FILE

08D3 10F0

SCORE

10F1 17D1

PLAY

If desired, a piece of music that was imported via HGET can be saved

within the simulator to a virtual tape by using the capture/replay

functionality. To save an example to a file from within ACUTER:

>HGET

[paste contents of SALLY.HEX into terminal]
08D3

08E3

08F3

[…]

10E3

 [SW15, SW13, SW8, SW0 up, all others down => prepare to capture data from
ACR to file #1]

http://deramp.com/downloads/altair/software/papertape_cassette/Music/The%20Music%20System/CUTER%20Manual.pdf
http://deramp.com/downloads/altair/software/papertape_cassette/Music/The%20Music%20System/Music%20System%20User%20Manual.pdf

- 49 -

[AUX2 up => start capture]
>SAVE SALLY 08D3 10F2

>

[AUX2 up => end capture]

To load an example from a file within ACUTER:

>GET

[SW15, SW13, SW8, SW0 up, all others down => prepare to play back file #1 to
ACR]
[AUX2 down => start playback]
SALLY 08D3 0820

>

MITS Programming System II

 [adapted from Mike Douglas’ instructions at altairclone.com]

The MITS Programming System II allows development of 8080 assembly
language applications
on the Altair 8800 using just paper tape or cassette for mass storage.
The package consists of an
editor, assembler, debugger and a monitor that allows execution of
these programs as well as the
programs you may develop.
To use the programming package, the monitor program is loaded from
paper tape or cassette in the
same manner as loading BASIC. Once loaded, the monitor is then used
to load the editor,
assembler, debugger or user programs.
The monitor loads from paper tape or cassette using the same
bootstrap loader as would be used
for BASIC version 3.2. Sense switch settings are the same with the
addition of A9 functionality:
A9 up – the monitor does NOT use serial input interrupts
A9 down – the monitor uses serial input interrupts

Loading the Monitor, Editor and Assembler

- 50 -

1) Set A15-A3 down and A2-A0 up.
2) Raise A9 if you want to disable interrupts. If interrupts are

enabled, serial replay is slower (because it must run at the given
baud rate). On the other hand, enabling interrupts enables the
use of Ctrl-C.

3) Push AUX1 down to load the monitor.
4) The monitor prompt is two spaces and "?"
5) STOP! Do not type any commands to see "what happens." If

what is typed is not a command, the monitor tries loading a
program of that name from the cassette and hangs there until
you provide that program. If the ABS device has been set to
audio-cassette (AC), then Ctrl-C will return to the monitor
prompt if interrupts were enabled during the boot process.
Otherwise, follow the instructions below to restart the monitor
from the front panel.

6) Assign the program load device to the cassette, type: "OPN
ABS,AC<cr>"

7) Load the editor, type: "EDT<cr>". When loaded, the editor's
prompt "*" is displayed. Type "E<cr>" to return the monitor.

8) Move the editor's buffer location into high memory so the
assembler can reside in memory at the same time as the editor.
For larger programs, more than the default 2K of buffer space
will probably be needed as well. Here are settings for an 8K
buffer:

Type "DEP 5124<cr>" and enter "0<cr>" then "100<cr>"
then ctrl-z.
This specifies the 16-bit octal address 40000 (0x4000)
for buffer start.
Type "DEP 5530<cr>" and enter "0<cr>" then "140<cr>"
then ctrl-z.
This specifies the 16-bit octal address 60000 (0x6000)
for buffer end.

9) Load the assembler, type: "AM2<cr>". When loaded, the
assembler prompt is "*ASM*<cr>". Type "EOA<cr>" (end of
assembly) to return to the monitor.

10) DBG, EDT and ASM share the same memory space (see Memory
Allocation section below). If two of them are loaded
sequentially, the system will just start the second one loaded,
even if invoking the first. For example, if EDT is loaded first and
then ASM, the monitor will invoke ASM if EDT is typed as a

- 51 -

command. To force reloading of a component, use CLR to
remove it from the program table, i.e. in the situation
mentioned before, typing CLR EDT and then EDT will invoke the
editor.

The computer is now ready to iteratively edit, assemble and run/test a
program.

Using the Editor and Assembler

1. To start the editor, type: “EDT<cr>” This starts the editor and
clears the edit buffer. To subsequently re-edit a program, type
“EDT(R)<cr>” This leaves the existing source code in memory. If
the “(R)” is left off, the program source will be erased.

2. At the editor prompt type “I” for insert. Ctrl-Z exits the insert
mode. “P” prints (displays) the file with line numbers. “W”
displays the file without line numbers. “D line[,line]” deletes
line(s). “R line” replaces a line. “I line” inserts after the specified
line. “I” by itself inserts before the first line. “E” exits the editor
and returns control to the monitor.

3. End programs with:

 BEG start label

 END program name

 EOA
Where “start label” is the program entry point, “program name”
is a three character program
name. “EOA” means end of assembly.

4. Assign source file input to come from the edit buffer instead of
a device and declare file type of ASCII (text file): Type, “OPN
FIL,EB,A<cr>” This only has to be done once during a session (or
if the FIL device was subsequently assigned to a different device
during the session).

5. Run the assembler: Type “AM2<cr>”
6. Tell the assembler to take input from a file: Type “FILE<cr>” The

assembler will run and show errors and undefined symbols.
Note: The “Undefined Symbols” heading is displayed even when
there are no undefined symbols. Control is returned to the
monitor.

- 52 -

7. Run the program by jumping to the starting address: Type “JMP
xxxxxx” where xxxxxx is the program starting address in octal.

8. You can enter the program into the monitor’s program table as
follows: After a successful assembly, re-enter the assembler and
preserve symbols: Type “AM2(P)<cr>”

9. Type “RUN name<cr>” where name is the three character name
for the program. The program will run. From here on, the
program can be run by typing the “name” specified at the
monitor prompt. This step does not have to be repeated after
subsequent assemblies if the entry address has not changed.

Memory Allocation

 The monitor is about 2.5K in length and uses RAM up through
0x0A3F

 The editor is about 2K in length and resides just above the
monitor at 0xA40 – 0x11B1, followed by the default 2K edit
buffer space from 0x11B2 – 0x19B1.

 Two versions of the assembler are available. Each are about 3K
in length. ASM (assembler version 1) loads at the same address
as the editor (0xA40). This is inconvenient for the iterative cycle
of edit, assemble and test. As an alternative, AM2 (assembler
version 2) loads just above the editor at 0x1350 – 0x1D78. The
assembler’s symbol table grows up from 0x1D78. Note that the
default location of the edit buffer conflicts with the load
address of AM2 as the edit buffer grows. Before using the editor
for longer programs, the location of the edit buffer should
moved to a free area in memory by using the monitor DEP
command to patch the buffer start address into octal locations
5124-5125 and the buffer end address+1 into octal locations
5530-5531.

 When using the AM2 assembler, a program loaded at 0x2000
leaves about 650 bytes of symbol table space (0x1D78 –
0x1FFF). This is enough for small demo programs of 100 lines or
less. Otherwise, a higher starting address should be used for the
target program

 The debugger is is about 2K in length and overlays the editor at
0xA40 – 0x133F. The debugger and AM2 assembler can both

- 53 -

reside in memory at the same time. This makes it easy to patch
programs with the assembler while debugging the program.

Loading and Saving Files

1. Assign the FIL device to the audio cassette and specify ASCII
files:
Type “OPN FIL,AC,A<cr>”

2. In the editor, type “L<cr>” to load a source file. Type “S<cr>” to
save a source file.

3. After loading a source file into the editor, you can re-assign FIL
to the edit buffer for use as the assembler input: Type “OPN
FIL,EB,A<cr>”

4. When you want to save an edited file after the edit and
assemble process, be sure to set the
FIL device back to AC before using the “S” command from
within the editor.

5. Optionally, you can take assembler source file input from the
audio cassette. After assigning
FIL to the AC (see step 2), in the assembler, type “FILE
name<cr>” where “name” is the three character source file
name for the assembler to read. The source file is then read
directly from the audio cassette instead of the edit buffer.

Additional Notes

 For space reasons the assembly examples (see below) are NOT
included if Z80 support is enabled.

 When using the edit buffer as the source for the assembler, the
source file must be “rewound” by editing the source file in
between successive assemblies.

 To restart the monitor, stop the machine, set all switches off
except A6 (i.e., set address of octal
100). Raise examine, set front panel switches back the way they
were at load time, then depress run.

 When sending large amounts of text (e.g. pasting source code
into the serial terminal), some characters may get lost. Refer
the section about pasting text into the terminal in the
“Interacting with running programs” about possible solutions.

- 54 -

Example usage #1: assemble directly from input

1) Make sure simulator is configured to send SIO output and SIO2 port 1
output to your terminal

2) [STOP]+[RESET] reset Altair
3) [A15-A3 down, A2, A1, A0 up] select program #7 (PS2 monitor)

using SIO card with interrupts
4) [AUX1 down] load and run PS2 monitor and

mount PS2 cassette tape
5) OPN ABS,AC assign ACR to ABS device (to load

editor/assembler)
6) AM2 start assembler (to load it into

memory)
7) [CLR] un-mount the PS2 tape
8) [A7 up, A2 down, A1 up] select ASM example #2 (“dump”

example from PS2 documentation)
9) [AUX2 down] start ASM source code example

replay
10) RUN DUMP runs DUMP example directly

from assembler

Example usage #2: insert into edit buffer, then

assemble

1) Make sure simulator is configured to send SIO output and SIO2 port 1
output to your terminal

2) [STOP]+[RESET] reset Altair
3) [A15-A3 down, A2, A1, A0 up] select program #7 (PS2 monitor)

using SIO card with interrupts
4) [AUX1 down] load and run PS2 monitor and

mount PS2 cassette tape
5) OPN ABS,AC assign ACR to ABS device (to load

editor/assembler)
6) EDT start editor (to load it into

memory)
7) E end editor
8) AM2 start assembler (to load it into

memory)
9) EOA exit assembler
10) DEP 5124 move edit buffer to 0x4000-

0x6000 = 8K length

- 55 -

11) 0 start address 100-000 = 40000
octal = 0x4000

12) 100
13) [CTRL-Z] end of input
14) DEP 5530
15) 0 end address 140-000 = 60000

octal = 0x6000
16) 140
17) [CTRL-Z] end of input
18) EDT start editor again (with new

buffer)
19) I enter "insert" mode
20) [CLR] un-mount the PS2 tape
21) [A7 up, A2 down, A1 down, A0 up] select ASM example #1 (PONG)

or [A7 up, A2 down, A1 up] select ASM example #2 (DUMP)
22) [AUX2 down] start ASM source code example

replay
23) [CTRL-Z] exit "insert" mode after example

is loaded
24) E exit editor
25) OPN FIL,EB,A select edit buffer as input device
26) AM2(S) go into assembler (S parameter

to print symbol table at end)
27) FILE load input file (from edit buffer)
28) EOA return to monitor
29) JMP 20000 run program

Example usage #3: insert into edit buffer, assemble,

write to file, run file

1) Make sure simulator is configured to send SIO output and SIO2 port 1
output to your terminal

2) [STOP]+[RESET] reset Altair
3) [A15-A3 down, A2, A1, A0 up] select program #7 (PS2 monitor)

using SIO card with interrupts
4) [AUX1 down] load and run PS2 monitor and

mount PS2 cassette tape
5) OPN ABS,AC assign ACR to ABS device (to load

editor/assembler)
6) EDT start editor (to load it into

memory)
7) E end editor

- 56 -

8) AM2 start assembler (to load it into
memory)

9) EOA exit assembler
10) DEP 5124 move edit buffer to 0x4000-

0x6000 = 8K length
11) 0 start address 100-000 = 40000

octal = 0x4000
12) 100
13) [CTRL-Z] end of input
14) DEP 5530
15) 0 end address 140-000 = 60000

octal = 0x6000
16) 140
17) [CTRL-Z] end of input
18) EDT start editor again (with new

buffer)
19) I enter "insert" mode
20) [CLR] un-mount the PS2 tape from

ACR
21) [A7 up, A2 down, A1 down, A0 up] select ASM example #1 (PONG)
22) [AUX2 down] start ASM source code example

replay
23) [CTRL-Z] exit "insert" mode after example

is loaded
24) E exit editor
25) OPN FIL,EB,A select edit buffer as input device
26) AM2(S,A) go into assembler (S parameter

to print symbol table at end,
 A to dump output binary to file)

27) [A15, A13, A8 up, A7 down] Prepare to capture file #1 from
ACR device

28) FILE load input file (from edit buffer)
[wait for “SENSE SW 15 FOR DUMP” message]
29) [AUX2 up] start capturing
30) [A15 down, A15 up] tells AM2 to start writing
[wait for “?” prompt from PS2 monitor]
31) [AUX2 up] finish capturing
32) [AUX2 down] start replay
33) PONG load and run PONG

- 57 -

Interfacing external hardware via data/address

buses

While the Simulator does not (and cannot) provide a full S-100 bus, it is
possible to use the connections to address LEDS (A15-0) and data LEDs
(D7-0) together with the as the INP/OUT/WO status LEDs to interface
external hardware.

Although this is not enough to connect vintage S-100 cards to the
Simulator, it is possible to create new hardware that interfaces via those
signals. Note that all signals can be picked up directly at the Arduino’s
pins, making it possible to place such external hardware on an Arduino
“shield”.

The Simulator software changes the state of the status LEDs after
setting the address/data LEDs to their respective values, so external
hardware can intercept

- OUT operations by reacting to a low->high edge of the OUT
signal

- IN operations by reacting to a low->high edge of the INP signal
- Memory WRITE operations by reacting to a high->low edge

(negative logic) of the WO signal.
Read below for details on how to handle each operation.
Note that it is currently not possible to intercept Memory READ
operations as the Simulator software has no way of knowing whether to
read from the emulated RAM or from data bus.

For all operations, address and data signals are updated just before the
signal LED changes state and the signal should be stable at that point.

Note that the Simulator timings are not precise. The actual length of an
OUT/INP/WO operation can vary greatly, depending on many conditions
such as the Simulator configuration, compiler optimization and others.
Not all cycles will have a consistent length, therefore only minimum
lengths for the operations are given below.

Intercepting OUT operations

- 58 -

The D7-0 LEDs in the Altair 8800 were connected to the S-100 bus’ DI7-0
lines, meaning they would show the state of the data bus going into the
CPU. During OUT and memory WRITE operations, data was put on the
DO7-0 lines and the DI7-0 lines were left floating, so the D7-0 LEDs
would all be on no matter what value was output.
In its default configuration, the Simulator emulates this behavior, so
external hardware monitoring the D7-0 LEDs would not be able to see
the actual data values. A setting in config.h provides a means to change
the behavior such that the D7-0 LEDs show the proper values for OUT
and memory WRITE operations:

In config.h change “#define SHOW_BUS_OUTPUT 0” to “#define

SHOW_BUS_OUTPUT 1”
The “OUT” pulse lasts 500 nanoseconds or longer.

Intercepting IN operations

The Simulator software emulates a number of hardware devices (disk
drive, hard disk, serial cards). If an IN instruction is executed that
requests data from a port that is not emulated, the input value will be
0xFF (as it would be in the original). However, there is a setting in
config.h that changes the behavior when inputting data from a port that
is not emulated. Setting “#define READ_UNUSED_PORTS_EXT 1”
in config.h will make the Simulator read the status of the SW15-8 input
lines in that case (instead of just returning 0xFF). The input value will be
read 700 nanoseconds (or later) after the low-high edge on the INP
signal. The whole “INP” pulse lasts 1500 nanoseconds or longer.

Intercepting memory WRITE operations

As during the OUT operation, memory WRITE operations would also not
show the output value on the D7-0 LEDs. The same config.h switch as in
the “OUT” section above will cause the Simulator software to show the
output values so they can be visible to external hardware. The “WO”
pulses last 200 nanoseconds or longer.

